高一数学必修一的学习,需要大家对知识点进行总结,这样大家最大效率地提高自己的学习成绩。下面高中必修一数学知识点总结是小编为大家整理的,在这里跟大家分享一下。 高中必修一数学知识点总结 第一章 集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:X Kb 1.C om 非负整数集(即自然数集) 记作:N 正整数集 :N*或 N+ 整数集: Z 有理数集: Q 实数集: R 1)列举法:{a,b,c } 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x R|x-3 2} ,{x|x-3 2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集合的分类: (1)有限集 含有有限个元素的集合 (2)无限集 含有无限个元素的集合 (3)空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1. 包含 关系 子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2. 相等 关系:A=B (5 5,且5 5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} 元素相同则两集合相等 即:① 任何一个集合是它本身的子集。A A ② 真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A) ③ 如果 A B, B C ,那么 A C ④ 如果A B 同时 B A 那么A=B 3. 不含任何元素的集合叫做空集,记为 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作 A交B ),即A B={x|x A,且x B}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作 A并B ),即A B ={x|x A,或x B}). 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作 ,即 CSA= A A=A A = A B=B A A B A A B B A A=A A =A A B=B A A B A A B B (CuA) (CuB) = Cu (A B) (CuA) (CuB) = Cu(A B) A (CuA)=U A (CuA)= . 二、函数的有关概念 1.函数的概念 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数(***电子邮箱格式:***号码邮箱是需要用户开通***号码邮箱之后才有的,邮箱的格式就是***号+@XX,例如开通了网易***号码邮箱,那么邮箱名就是“***号@163.com”。开通***邮箱方式:按自己的需求到相应邮箱***去查找,然后按照提示的流程操作即可。)f(x)和它对应,那么就称f:A B为从集合A到集合B的一个函数.记作: y=f(x),x A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关); ②定义域一致 (两点必须同时具备) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义: 在平面直角坐标系中,以函数 y=f(x) , (x A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 1.描点法: 2.图象变换法:常用变换方法有三种:1)平移变换2)伸缩变换3)对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作 f(对应关系):A(原象) B(象) 对于映射f:A B来说,则应满足: (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u M),u=g(x)(x A),则 y=f[g(x)]=F(x)(x A) 称为f、g的复合函数。 二.函数的'性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质; (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法:
(1)任取x1,x2 D,且x1 (2)作差f(x1)-f(x2);或者做商 (3)变形(通常是因式分解和配方); (4)定号(即判断差f(x1)-f(x2)的正负); (5)下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律: 同增异减 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)= f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 9.利用定义判断函数奇偶性的步骤: ○1首先确定函数的定义域,并判断其是否关于原点对称; ○2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x) f(x)=0或f(x)/f(-x)= 1来判定; (3)利用定理,或借助函数的图象判定 . 10、函数的解析表达式 (1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法 11.函数最大(小)值 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 第三章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 1,且 *. 负数没有偶次方根;0的任何次方根都是0,记作 。 当 是奇数时, ,当 是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1) (2) ; (3) . (二)指数函数及其性质 1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a 1 0 定义域 R 定义域 R 值域y 0 值域y 0 在R上单调递增 在R上单调递减 非奇非偶函数 非奇非偶函数 函数图象都过定点(0,1) 函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上, 值域是 或 ; (2)若 ,则 ; 取遍所有正数当且仅当 ; (3)对于指数函数 ,总有 ; 二、对数函数 (一)对数 1.对数的概念: 一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( 底数, 真数, 对数式) 说明:○1 注意底数的限制 ,且 ; ○2 ; ○3 注意对数的书写格式. 两个重要对数: ○1 常用对数:以10为底的对数 ; ○2 自然对数:以无理数 为底的对数的对数 . 指数式与对数式的互化 幂值 真数 = N = b 底数 指数 对数 (二)对数的运算性质 如果 ,且 , , ,那么: ○1 + ; ○2 - ; ○3 . 注意:换底公式: ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论:(1) ;(2) . (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式 (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+ ). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a 1 0 定义域x 0 定义域x 0 值域为R 值域为R 在R上递增 在R上递减 函数图象都过定点(1,0) 函数图象都过定点(1,0) (三)幂函数 1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+ )都有定义并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第四章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。 即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: ○1 (代数法)求方程 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . (1)△ 0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. (2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△ 0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点. 5.函数的模型
(1)任取x1,x2 D,且x1 (2)作差f(x1)-f(x2);或者做商 (3)变形(通常是因式分解和配方); (4)定号(即判断差f(x1)-f(x2)的正负); (5)下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律: 同增异减 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)= f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 9.利用定义判断函数奇偶性的步骤: ○1首先确定函数的定义域,并判断其是否关于原点对称; ○2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x) f(x)=0或f(x)/f(-x)= 1来判定; (3)利用定理,或借助函数的图象判定 . 10、函数的解析表达式 (1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法 11.函数最大(小)值 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 第三章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 1,且 *. 负数没有偶次方根;0的任何次方根都是0,记作 。 当 是奇数时, ,当 是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1) (2) ; (3) . (二)指数函数及其性质 1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a 1 0 定义域 R 定义域 R 值域y 0 值域y 0 在R上单调递增 在R上单调递减 非奇非偶函数 非奇非偶函数 函数图象都过定点(0,1) 函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上, 值域是 或 ; (2)若 ,则 ; 取遍所有正数当且仅当 ; (3)对于指数函数 ,总有 ; 二、对数函数 (一)对数 1.对数的概念: 一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( 底数, 真数, 对数式) 说明:○1 注意底数的限制 ,且 ; ○2 ; ○3 注意对数的书写格式. 两个重要对数: ○1 常用对数:以10为底的对数 ; ○2 自然对数:以无理数 为底的对数的对数 . 指数式与对数式的互化 幂值 真数 = N = b 底数 指数 对数 (二)对数的运算性质 如果 ,且 , , ,那么: ○1 + ; ○2 - ; ○3 . 注意:换底公式: ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论:(1) ;(2) . (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式 (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+ ). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a 1 0 定义域x 0 定义域x 0 值域为R 值域为R 在R上递增 在R上递减 函数图象都过定点(1,0) 函数图象都过定点(1,0) (三)幂函数 1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+ )都有定义并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第四章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。 即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: ○1 (代数法)求方程 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . (1)△ 0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. (2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△ 0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点. 5.函数的模型
【高中必修一数学知识点总结】相关文章:
高中化学必修一知识点总结08-24
高中化学必修二知识点总结09-10
高中政治必修2知识点总结04-06
高中政治必修二知识点总结06-19
高中必修二数学知识点总结04-06
高中化学必修一知识点总结10-27
高中必修一化学知识点总结大全06-10
高中政治必修三知识点总结06-20
人教版高中化学必修一知识点总结04-04